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Abstract—A new four-port scattering parameter (S-parameter)
and broad-band noise deembedding methodology is presented.
This deembedding technique considers distributed on-wafer
parasitics in the millimeter-wave band (f > 30 GHz). The
procedure is based on simple analytical calculations and requires
no equivalent circuit modeling or electromagnetic simulations.
Detailed four-port system analysis and deembedding expres-
sions are derived. Comparisons between this new method and
the industry-standard “open-short” method were made using
measured and simulated data on state-of-the-art SiGe HBTs
with a maximum cutoff frequency of approximately 180 GHz.
The comparison demonstrates that better accuracy is achieved
using this new four-port method. Based on a combination of mea-
surements and HP-ADS simulations, we also show that this new
technique can be used to accurately extract the S-parametersand
broad-band noise characteristicsto frequencies above 100 GHz.

Index Terms—Deembedding, noise, noise correlation matrix,
parasitics, S-parameters, SiGe HBT, Y -parameters.

I. INTRODUCTION

HE accuracy of high-frequency characterization of

state-of-the-art SiGe HBTSs is important in both device
modeling and circuit design. For accurate evaluation of the
high- frequency characteristics, extraction of the transistor
S-parameters and broad-band noise characteristics at very high
frequencies is typically required. As the operating frequency
increases into the microwave range, the on-wafer parasitic
effects can become significant in such measurements, requiring
robust calibration techniques in order to accurately deembed
the parasitics from the transistor response.
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Fig. 1. Illustration of agenera four-port structure. The two extrinsic ports of
the DUT are denoted ports 1 and 2, and the two ports of intrinsic device (INT)
are denoted ports 3 and 4.

The standard “open” deembedding method was first pro-
posed in 1987 [1] and employs a technique in which the pad
capacitanceis accounted for and calibrated by using an “ OPEN”
test structure (i.e., no transistor). Several other deembedding
methods were subsequently proposed, and which use additional
test structures (including the “SHORT” and “THROUGH,” €tc.)
to calibrate both the pad and interconnect parasitics in the
device-under-test (DUT) [2], [3].

The current industry paradigm is the so-called “ open—short”
standard [3]. However, since this approach assumes lumped-
component approximations, it begins to lose accuracy as the
frequency increases above approximately 30 GHz. For morero-
bust S-parameter extraction, severa high-frequency deembed-
ding techniques have been recently proposed [6], [7]. These
methods either use equivalent two-port analysis (with cascade,
series, or parallel structures) or complicated equivalent circuit
models, which simplify the parasitics under suitable approxima-
tions (e.g., the cascade structure neglects the parasitic feedback
from the output to input).

To generalize the problem and avoid the potential inaccuracy
caused by the above assumptions or simplifications, afour-port
system calibration methodology was introduced by Rizzoli et
al. for noise analysis [8]. As shown in [8] and [9], any two-
port measurement can be modeled as a four-port system, which
captures al of the parasitics surrounding the intrinsic device
(Fig. 1). Once the 4 x 4 matrix of the system is solved, the
intrinsic S-parameters can be accurately extracted. However,
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the 4 x 4 matrix was solved either using equivalent-circuit [8],
[9] or electrical magnetic (EM) simulations, together with ad-
ditional calibration [10]. Clearly, the accuracy of such methods
depends on the validity of the lumped or distributive model.

In this paper, we present a set of test structures that effi-
ciently determine the Y -parameters of the four-port parasitic
network without requiring any equivalent-circuit assumptions
or EM simulations. Thus, this deembedding methodol ogy con-
siders al parasitics in a general manner, making it suitable for
very high-frequency measurements and package parasitic de-
coupling. We apply this deembedding methodol ogy to the char-
acterization of state-of-the-art SiGe HBTSs.

Il. FOUR-PORT PARASITIC DEEMBEDDING THEORY
A. S-Parameters

Asshown in Fig. 1, the parasitics are modeled as a four-port
system. The |-V relationships of the extrinsic and intrinsic ports
can bewritten asa4 x 4 Y-matrix according to

I Yi1 Yi2 Yiz Y |41

Iy} _ | Y Y2 Yoz You Vo )
I3 Y31 Yz Yz Yau Va |-

1, Yy Y Y Yy Vi

In some circumstances, Y;; can be oo (i.e., there is a short be-
tween various ports). In this case, let Y;; be very large to avoid
any singularities.

Let V. and I, betheextrinsic voltage and current vectors, and
V; and I; be the intrinsic voltage and current vectors [10]

Vi I
Vel _ | V2 LY _ | Iz
<V71>_ V3 and <Ii>_ I3
Vi Ly

Thus, we have [8]

Ie _ Y'ee Yrei ‘/e
<I>_[Y Y}(V) &
where[Ye.], [Yei], [Yie], and [Y;;] arefour 2 x 2 matrices. Hence,

the extrinsic Y -parameters and the intrinsic device Y -parame-
ters can then be related as

YPUTY, =Y. V. + Yo Vi
YTV, =Y V. + Y3, V;

where YN are the intrinsic device Y -parameters and Y PUY
are the two-port Y -parameters of the DUT.

Note that the current directions of the intrinsic device are op-
positeto the current directions of the parasitics. Onethus obtains

—1

YPUT — v, — Y, (Y™NT 4 Y)Y ©)]

or

YINT = —Y;G (YDUT - YVee) _1Y;%i - Y;l (4)
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Fig. 2. Equivalent-circuit model of the traditional “ open—short” deembedding
method.

Oncethe 16 variables of the 4 x 4 matrix are known, one can
build the appropriate one-to-one relationship between the ex-
trinsic and intrinsic Y -parameters. The next step is to measure
design test structures for determining the four-port parameters.
Sincefor each test structure one can measurea?2 x 2 Y -param-
eter matrix, one obtains four equationsin each ac measurement.
To solvefor al 16 variables, one needs to measure at least four
different test structures, unless approximations are made.

The industry-standard “open—short” deembedding method
only uses two test structures: an open and a short, together with
an equivalent-circuit model. Fig. 2 shows the equivalent-circuit
model of this traditional “open—short” deembedding method.
One can see that the distributed parasitics are simplified into
one paralel capacitor (G) at the extrinsic end and two series
inductors (Z) between the extrinsic and intrinsic ends. The
intrinsic device Y -parameters can thus be calculated by

yINT _ |:(YDUT _ YOPEN)_1 _ (YSHORT _ YOPEN)_1:|71

©)

where [Y PV, [V INT], [y OPEN] and [YSHORT] arethe Y -pa-

rameters of the DUT, intrinsic device, open structure, and short

structure, respectively. Using this method on afour-port system,

one gets V; = 0 for the short structure and Z; = 0 for the open

structure. Applying these two boundary conditions to (2), one

obtains

y SHORT _y-

- €e

YOPPN =V, — Vi (Vi) ™ Y.

Putting the above equationsto (5), after simplification, yields

Yx +Yp =Yx Y5 Wi Y Yo + Yy Y5 Vi Y5 'Yy
Yy = YDPUT _ ySHORT
Y} — ySHORT _ -OPEN_

Without loss of generality, Y can be any matrix and, thus, the
equalities above hold when

Yrie, = Y;i = Y'” — YSHORT _ YOPEN, (6)

Equation (6) gives the condition (assumption) for when the
“open-short” approach is valid. At high frequencies (e.g.,
f > 30 GHz), however, this assumption is clearly no longer
valid because the distributed nature of the parasitics must be
considered.
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Fig. 3. Equivaent circuit of the noise current model for an n-port system.
Here, 7., ; isthe equivalent noise current at port <.

B. Noise Deembedding Theory

To simplify the deembedding procedure and apply it to broad-
band noise extraction, we use the noise current correlation ma
trix SY to represent a generalized noisy system. Fig. 3 shows
the equivalent circuit of the noise current model for an n-port
system [11], [12]. The correlation matrix can be written as

7 7% 7 7
anan,l Ln,lL:’n

SY =

'Ln,nlz,l in,ni:,,n
wherei, ;, j = 1,2,3, ... isthenoise current source at port j.

In atwo-port system, the minimum noise figure Fi,,;,,, noise
impedance R,,, and optimum noise admittance Y., can be di-
rectly converted into the noise current correlation matrix SY»
(see Appendix A).

Once we obtain the 4 x 4 Y-matrix, the noise deembedding
method is thus straightforward [9]. Fig. 4 shows the equivalent
circuit of the noise model of the DUT. For accurately mod-
eling the four-port parasitic noise behavior, four noise current

sources Z and the 4 x 4 noise current correlation matrix SY

are used. The noise current sources and the correlation matrix
can be written as

[SYn11 SYnio SYniz SYnia
SY, = SYpo1 SYnze SYnoz SY, o4
SYn,31 SYn,32 SYn,33 SYn,34
L SYn,4l SYn,42 SYn,43 SYn,44
[in,1n 1 nllyg Inllps fnilny
in2tn 1 In2ln o In2ins in2iyy
in3ly 1 n3ln2 tn3lpz in3ipy
Linaty 1 tnalyg Indlps Inalyy
=i, 0

where 5Y,, ;;, ¢, and j = 1,2,3,4 are the noise current corre-

lation between ports ¢ and ;. For brevity, Z and SY, areaso
written as

in,l
- in,? <in,e>
1ny = . =1 .
n,3 tn,i
in,4
SYn,ee SYn,ei AL Yree Yrei
= [SYn,ie SYn,J = AW Red QY YD

where ¢, . and i, ; are extrinsic and intrinsic noise current
sources, respectively.
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Fig. 4. Equivalent circuit of the noise model of the DUT. Here, i, c1, ts,e2,
in 41, a0d ¢, ;o @enoisecurrent sources at ports 1-4, respectively, and ¢,, int1
and i, ;nt2 are the noise current sources of the intrinsic two-port system.

Thefour-port -V relation of the DUT, considering noise cur-
rents, can then be written as

Ie + in,e _ Y'ee Yrei ‘/e (7)
Li+itni+inm ) |Yie Yi Vi)~

One can thus calculate the intrinsic noise correlation matrix as
(see Appendix B)

SYn,int = (YT)_l(SYn,total - SYn,ee) (Y’_Zf)_l
—SYpii+ (Y1) 1SV i + SV (V) TH (8)

—1

where Y7 = Y., (YINT +Y;))

IIl. TEST STRUCTURES AND DEEMBEDDING METHODOLOGY

To obtain the values of the 16 elements in the 4 x 4 ma
trix, a direct approach is to use more test structures to obtain
more boundary conditions. Referring to (3), one obtainsthe ma-
trix of Yoi(Yiest,int + Yii) ™ Yie USING Yies; — YSHORT, where
Yiesy are the measured Y -parameters and Yieg: ine @€ the in-
trinsic Y -parameters of the test structures. One can obtain var-
i0US Yo = Yiest int + Yi; by carefully choosing different testing
structures and then linearly expanding the measured matrices.
In this method, we are attempting to obtain matricesin the form
of

yro =y, [0 Oy,
€ -0 a 1€

(b0
RO __ -
Y —Y;Z_O O}Y
YT =y, | ¢ }Y

where a, b, and ¢ are constants. Thus, Y.; and Y;. can be calcu-
lated using

. e
Y
Yie =kiY =k 9)
Uiy
my Mi—~&5
ul?
1 mo
Yo =kY. =k, Y5 ﬁ (10)
RO 2710
11 11 -,
Yii = ke, Y7, (YSHORT _ YOPEN) v, (12)
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Fig. 5. Layout of the DUT and the required test structures.
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where k; and k,. are scale factors and will be determined bel ow.

To obtain the matrices discussed above, five test structures
are needed. Fig. 5 showsthelayout of the DUT and the required
test structures. The Yies int + Yi: fOr OPEN, LEFT, RIGHT, and
THROUGH test structures are

) [ Yia Vi
Y;)pen,lnt + Y;,z - _Y;‘,i,Ql Y;i,?? (12)
Yiui+a Y
Yiett,in Yi = ‘ ’ 13
left, int + | Yii1 Y 20 (13)
[Yiiaz Yii 12
Yiight,int + Yii = ’ ’ 14
ght.int + | Yiio1 Yiioo + gr (14)
oy [Yiu+A Y- A
Kllrougll,lnt +Y;z — _Y;i,Ql — A Y;i,?? +A
A— o0 (15)
where ¢; = 1/R; and g, = 1/R, are conductances of the
resistorsin the LEFT and RIGHT structures, respectively.
One can prove (see Appendix C) that
YLEFT _ Y OPEN _ (] _ ,)y/SHORT _y KU 0} v
€1 0 a €
(6 0
RIGHT _ 3y~ OPEN _ /4 SHORT _ vy -
Y 7Y (1-y)Y Yo 0 0} Yie
yTHRU _ 3 OPEN _ (1- Z)ySHORT V. e } Y
et c k13

LEFT

RIGHT

by solving for z, v, and = in the following:

lyT,EFT _ xYOPEN _ (1 _ .’L')YSHORT[ =0 (16)
lyRTGHT _ yYOPEN _ (1 _ y)YSHORT[ =0 (17)
lyTHRU _ ZYoPEN _ (1 _ Z)ySHORT[ =0 (18)

and choosing the solution « # 1,y # 1, and z # 1. Taking
(9)—<(11) into (4), one gets

YINT = kY (VPVT YL ) TNV - Y
Substituting for YPUT using Y MFFY | one gets

YR = gk (Y (YPUT - 1) Y - 1)
=k wk[YLTNT

-5 3

where YLINT — _y? (yPUT _y, 7'y’ _ Y7 Thusk,k; =
g YEINT,

Finding the product of %, and %; is sufficient to deembed the
Y -parameters, but isnot sufficient in order to deembed the noise
correlation matrix. Rather, one needs to obtain the value of &,
and k;, respectively. To determinethese val ues, one must usethe
genera nature of the passive system

(19)

4T Rea(Yyy) = in iy, = (in 0y ;) = 4kT Rea (Y};).

Red(Y.; 11) =
z JYLINT
At this point, all 16 elements of the 4 x 4 matrix are deter-
mined. The intrinsic Y -parameters and broad-band noise char-
acteristics can thus be obtained using (4) and (8).

Real (Y. 11) and, hence, k., = k =
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IV. NONIDEALITIES AND VALIDITY CHECK

Inreality, test structures can never be perfectly ideal. It isthus
necessary to check the validity of the proposed deembedding
methodology using nonideal test structures. The assumptions
madein thismethod arethat (12)—15) and Yee +Ye; (Yenort, int +
Y;;)~1Y;. ~ Y., hold. Since one solution of z, ¥, and ~ should
be one, one can check the validity of the first four equations by
solving x, i, and z from the measured data. One cannot check
the validity of the last equation, however, by simply manipu-
lating the measured data.

In the current SiGe HBT technology, the intrinsic device
layout size is smaller than a few tens of micrometers, although
the DUT size (including pads, etc.) is several hundreds of mi-
crometers and, thus, the assumptions are valid in the millimeter-
wave band with optimized layout design. In higher frequency
measurements (i.e,, f > 300 GHz), if one can accurately esti-
mate the nonideal intrinsic S-parameters of the test structures,
the methodology will remain useful with a few modifications
in the extraction equations.

V. SUMMARY OF THE PROPOSED DEEMBEDDING PROCEDURE

1) Measure the S-parameters of [SPVT], [SOVEN]
[SSHORT] [STHRU] [SLEFT] and [SRIGHT]' Con-
vert the S-parametersinto Y -parameters.

2) Solvefor z, ¢, and z in the following:

HYLEFT] _ x[yOPEN] _ (1 _ x)[ySHORT” =0
HYRTGHT] _ y[YOPEN] _ (1 _ y) [YSHORT” -0
[[YTHRU] _ z[YOPEN] _ (1 _ Z)[ySHORT][ —0.

Choosethe solutionz # 1,y # 1, and z # 1.
3) Let

YLO :YLEFT _ xYoPEN _ (1 _ x)ySHORT
YRO :YRIGHT _ yYoPEN _ (1 _ y)YSHORT

YTS :YTHRU _ 7yOPEN _ (1 _ 7)ySHORT

and obtain unscaled [Y/],
(9-11).

4) Calculate the scale factor & using (19).

5) Cadculate theintrinsic Y -parameters using (4).

6) Calculate the intrinsic noise correlation matrix using (8).

[Yiel, and [Yji] by using

VI. MEASUREMENT AND VERIFICATION

To compare the various deembedding methods, the S-param-
eters of state-of-the-art 0.12 x 2.5 pm? SiGe HBTs were mea-
sured (Fig. 6).

The peak fr of these SiGeHBTsis180 GHz fora BVogo =
2.2 V. The measurements were performed using a conventional
microwave probing system and an HP 8510C vector network
analyzer over afrequency range of 4-36 GHz.

Fig. 7 compares the measured and “open-short” deem-
bedded S-parameters. Note that, for a better comparison, we
have plotted Sy; /4 and Sa, — 1 instead of Sy; and Ss,. Observe
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Fig. 6. Measured cutoff frequency characteristics of the state-of-the-art SiGe
HBTSs used for verification.

Fig. 7. Measured and deembedded S-parameters. The device was biased at
Ic=2mAandVeg = 1V.

that alarge deviation is seen between the raw and deembedded
data. This is because the parasitics are comparable to the
intrinsic device Y -parameters in these small-sized devices. A
more sophisticated deembedding method is clearly required for
accurate characterization of such high-speed devices.

To fully verify the accuracy of the proposed new four-port
deembedding methodology at high frequencies, and to make a
fair comparison with other deembedding techniques, one must
resort to device simulations because the (implicitly accurate)
simulated intrinsic device S-parameters are needed to quantify
accuracy of the various deembedding methods.

Several equivalent circuits were chosen to determine how
a given parasitic model impacts the various deembedding
methods. Fig. 8 shows three equivalent circuits of the para-
sitics. The component values in each circuit were extracted and
optimized from the measured S-parameters of parasitics. A
device model carefully calibrated to measured data was used in
HP-ADS to simulate the S-parameters of the SiGe HBTs both
with and without the parasitics. The simulated frequency range
was 1-100 GHz. Fig. 9 shows the deembedded Y -parameters
after applying both the “open—short” and the new four-port
method on each parasitic model.

For equivalent-circuit model 1, the intrinsic Y -parame-
ters are accurately deembedded using both the four-port and
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Fig. 10. Equivaleent circuit of the DUT used in the HP-ADS simulations.

w Intrinsic
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Fig. 11. Simulated intrinsic and four-port deembedded S-parameters. The
frequency rangeis from 1 to 100 GHz.

“open—short” method. For equivalent-circuit models 2 and
3, however, observe that the “open—short” method produces
large deviations from the intrinsic Y -parameters at frequencies
above approximately 30 GHz. This clearly demonstrates the
potential inaccuracy of the traditional “open—short” method
a high frequencies. Observe as well that the accuracy of the
new four-port method is not dependent on the choice of the
equivalent circuit or the frequency.

Without loss of generality, we can arbitrarily choose the four-
port Y -parameters as a parasitic system in Fig. 10 and then ex-
tract the Y -parameters using the proposed four-port method.
Fig. 11 showsthe simulated intrinsic and four-port deembedded
S-parameters. Excellent agreement is observed acrossthe entire
frequency range. In general, the current method isvalid for any
four-port parasitic system and, thus, should also be suitable for
package deembedding, where wire-bonds, for instance, must be
carefully considered.

The noise characteristics were also simulated and compared
in HP-ADS on the same device. Fig. 12 shows the noise charac-
teristics of DUT, both intrinsic and deembedded, using both the
traditional “ open—short” and the new four-port method. There-
sults again show good precision using the four-port method. For
the “open-short” technique, NF i, and Iy, are deembedded
correctly for a wider frequency range (up to 60 GHz). Note,
however, that R, is underestimated at frequencies above ap-
proximately 30 GHz. Hence for an accurate noise characteriza-
tion of SiGe HBTsat high frequencies, the new four-port deem-
bedding methodology is aso preferred.
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VIl. SUMMARY

We have proposed a new four-port S-parameter and broad-
band noise deembedding methodology that is useful for high-
frequency characterization transistors. The method requires
no equivalent-circuit modeling or detailed EM simulations.
Systematic four-port analysis and mathematical derivations
are presented to prove the validity of the method. Detailed
comparisons between the traditional “open—short” method and
this new four-port method were performed using measurements
and calibrated simulations of state-of-the-art SiGe HBTs. The
results clearly demonstrate that this method is more accurate
than the industry-standard “open-short” method. Based on
HP-ADS simulations using calibrated SiGe HBT models, one
can correctly extract S-parameters and noise characteristics
at least to 100 GHz, and this new four-port method should
also prove useful for extracting package parasitics in complex
systems.

APPENDIX
A. Two-PoRT NOISE CHARACTERISTICS AND
CORRELATION MATRIX

The minimum noise figure F,,,;,,, hoise impedance R,,, op-
timum noise admittance Y, ¢, and noise current correlation SY»
can be related by [13]

ca1 =4kTR,
Enin -1 ”
ca12 =4kT <T - RnYopt)

"
ca21 =04 1o

2
Ca22 = 4kTRn ly;l)t [

SY, = AC,A*
where
o —Y11 1
A= [—Ym 0}
Oy = |:CA,11 CA,12:| )
Ca21 CA22

B. FOUR-PORT NOISE CORRELATION MATRIX DEEMBEDDING

Substituting Z; = —Y ™'V into (7), one obtains

Ie + in,e - Y;7 (YINT + Y;7) - (in,i + in,int)

= Ve = va (Y™ 4 vi) T
= in,total
= in,e - Y;7 (YINT + Y;7) - (in,i + in,int)

where ¢, o121 are the equivalent noise current sources at the
extrinsic ports. The resultant noise correlation is shown in the
equation at the bottom of the following page.
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Fig. 12. Noise characteristics of the DUT, both intrinsic and deembedded using the “ open—short” method and the proposed four-port method.

Notethat theintrinsic device noise sources and parasitic noise
sources are uncorrelated and, thus, one obtains

SYn,total = in7€i:7€ + Yrei (YINT + Y;z) -
% (B + e )| (VT Y)Y

Y, (YT 4+ v;,)

in:ii:,,e - in,iin:ﬁ
x [T v T v

= SYn,ee + YTSYn,zzYIr + YTSYn,intY’Zf
—YrSY, e — SY, Y7

where
Yo =Ya(Y™N 4 v;) 7
Y, .. =4kT Redl(Y..)
Y, i =4kT Real(Y.;)
Yy, ;e =4kT Real(Y,)
Y, ;; =4kT Rea(Y;;).

Hence, the intrinsic noise current correlation matrix can be
caculated as

SYn,int = (YT)_l(SYn,total - SYn,ee) (Y;‘)_l

—SY, i+ (Yr)7LSY,, i + SY e (qu)_l . (20

C. LINEAR EXPANSION OF THE Y -PARAMETERS OF
THE TEST STRUCTURES

The Yiest,int + Yi; fOr the OPEN, LEFT, RIGHT, and THROUGH
test structures are

[Yiiar Yiiae
Yropen,int +Yy = ’ ’

| Y21 Yii22
Yiett,int + Yi: = —Y”?ll +a Yiz‘,m}
7 | Yo Yii 22
Yiight,int + Y = ?i,n v Yii 1z }
7 | 44,21 ii,22 T 9r

Yrthrough,int + Y;z =

[Yiii+A Yinn—A
| Yiiz1 — A Yoo+ A"

Consider (Yopen, int+Y7:) ™ and (Yieg: e +Y7;) " asfollows:

[ Yoo =Y
(opense 337" = —Yg,m an
L D D
i Yii 00 ~Yii12
(Viett,int + Yii) "t = (D + giYsi0) (D4 gYi 22)
| —Yiiz (Yiiii+a1)
L (D4 giYii22) (D + g1Yii22)

SYn,total = in,total X Z: total — |:in,e - Yrei (YINT + Y;z) _1(in,i + in,int):| X |:in,e - Yrei (YINT + Y;z) _1(in,i + in,int):| ”
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=0 = |y LEFT _y OPEN| g

i} P /B
D (D + g1Yii 22)

where D = |Y;| = Yii11Y5i,20 — Yii 12Y5s,21. If we choose
z = D/(D + gi1Ys;,22), then

YLEFT _ 5y OPEN _ (1 _ )y SHORT

= Y;%i [(Yieft,int + Y;i)_l - -/L'(Yglden,int + Y;i)_l] Y;e

0 0
—Y;z|:0 a:|Y;e

where a = gi/(D + giYii22). Thus, = = D/(D + giYii 20) is
one solution of YLEFT _ 5y OPEN _ (7 _ )y SHORT _ ¢,
On the other hand, see the equation shown at the top of this

page.
Hence, D/(D + ¢,;Y;; 22) and 1 are the only two solutions of

(16). Similarly one can prove D/(D + ¢;Y;;11) and 1 are the
only two solutions of (17); D/(D + A(Yy 11+ Yii 12 + Yii 21 +
Y 22)) and 1 aretheonly two solutionsof (18). Thus, thevalues
of x, y, and = are fully determined.
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